Anonymous FTP

A host which provides an FTP service may additionally provide Anonymous FTP access as well. Under this arrangement, users do not strictly need an account on the host. Instead the user typically enters 'anonymous' or 'ftp' when prompted for username. Although users are commonly asked to send their email address as their password, little to no verification is actually performed on the supplied data.

As modern FTP clients typically hide the anonymous login process from the user, the ftp client will supply dummy data as the password (since the user's email address may not be known to the application).

For example, the following ftp user agents specify the listed passwords for anonymous logins:

* Mozilla Firefox (2.0) — mozilla@example.com

* KDE Konqueror (3.5) — anonymous@

* wget (1.10.2) — -wget@

* lftp (3.4.4) — lftp@

Anonymous FTP

The Gopher protocol has been suggested as an alternative to anonymous FTP, as well as Trivial File Transfer Protocol and File Service Protocol.


Types of Packet Switching

Connectionless and connection-oriented packet switching

The service actually provided to the user by networks using packet switching nodes can be either be connectionless (based on datagram messages), or virtual circuit switching (also known as connection oriented). Some connectionless protocols are Ethernet, IP, and UDP; connection oriented packet-switching protocols include X.25, Frame relay, Asynchronous Transfer Mode (ATM), Multiprotocol Label Switching (MPLS), and TCP.

In connection oriented networks, each packet is labeled with a connection ID rather than an address. Address information is only transferred to each node during a connection set-up phase, when an entry is added to each switching table in the network nodes.

In connectionless networks, each packet is labeled with a destination address, and may also be labeled with the sequence number of the packet. This precludes the need for a dedicated path to help the packet find its way to its destination. Each packet is dispatched and may go via different routes. At the destination, the original message/data is reassembled in the correct order, based on the packet sequence number. Thus a virtual connection, also known as a virtual circuit or byte stream is provided to the end-user by a transport layer protocol, although intermediate network nodes only provides a connectionless network layer service.

History of packet switching

The concept of packet switching was first explored by Paul Baran in the early 1960s, and then independently a few years later by Donald Davies (Abbate, 2000).

Leonard Kleinrock conducted early research in queueing theory which would be important in packet switching, and published a book in the related field of digital message switching (without the packets) in 1961; he also later played a leading role in building and management of the world's first packet switched network, the ARPANET.

Baran developed the concept of packet switching during his research at the RAND Corporation for the US Air Force into survivable communications networks, first presented to the Air Force in the summer of 1961 as briefing B-265 then published as RAND Paper P-2626 in 1962 , and then including and expanding somewhat within a series of eleven papers titled On Distributed Communications in 1964. Baran's P-2626 paper described a general architecture for a large-scale, distributed, survivable communications network. The paper focuses on three key ideas: first, use of a decentralized network with multiple paths between any two points; and second, dividing complete user messages into what he called message blocks (later called packets); then third, delivery of these messages by store and forward switching.

Baran's study made its way to Robert Taylor and J.C.R. Licklider at the Information Processing Technology Office, both wide-area network evangelists, and it helped influence Lawrence Roberts to adopt the technology when Taylor put him in charge of development of the ARPANET.

Baran's packet switching work was similar to the research performed independently by Donald Davies at the National Physical Laboratory, UK. In 1965, Davies developed the concept of packet-switched networks and proposed development of a UK wide network. He gave a talk on the proposal in 1966, after which a person from the Ministry of Defense told him about Baran's work. Davies met Lawrence Roberts at the 1967 ACM Symposium on Operating System Principles, bringing the two groups together.

Interestingly, Davies had chosen some of the same parameters for his original network design as Baran, such as a packet size of 1024 bits. Roberts and the ARPANET team took the name "packet switching" itself from Davies's work.

Packet switching in networks

Packet switching is used to optimize the use of the channel capacity available in digital telecommunication networks such as computer networks, to minimize the transmission latency (i.e. the time it takes for data to pass across the network), and to increase robustness of communication.

The most well-known use of packet switching is the Internet and local area networks. The Internet uses the Internet protocol suite over a variety of Link Layer protocols. For example, Ethernet and frame relay are very common. Newer mobile phone technologies (e.g., GPRS, I-mode) also use packet switching.

X.25 is a notable use of packet switching in that, despite being based on packet switching methods, it provided virtual circuits to the user. These virtual circuits carry variable-length packets. In 1978, X.25 was used to provide the first international and commercial packet switching network, the International Packet Switched Service (IPSS). Asynchronous Transfer Mode (ATM) also is a virtual circuit technology, which uses fixed-length cell relay connection oriented packet switching.

Datagram packet switching is also called connectionless networking because no connections are established. Technologies such as Multiprotocol Label Switching (MPLS) and the Resource Reservation Protocol (RSVP) create virtual circuits on top of datagram networks. Virtual circuits are especially useful in building robust failover mechanisms and allocating bandwidth for delay-sensitive applications.

MPLS and its predecessors, as well as ATM, have been called "fast packet" technologies. MPLS, indeed, has been called "ATM without cells". Modern routers, however, do not require these technologies to be able to forward variable-length packets at multigigabit speeds across the network.

Packet switching

Packet switching is a network communications method that groups all transmitted data, irrespective of content, type, or structure into suitably-sized blocks, called packets. The network over which packets are transmitted is a shared network that routes each packet independently from all others and allocates transmission resources as needed. Principal goals of packet switching are to optimize utilization of available link capacity and to increase robustness of communication.

Network resources are managed by statistical multiplexing or dynamic bandwidth allocation in which a physical communication channel is effectively divided into an arbitrary number of logical variable-bit-rate channels or data streams. Each logical stream consists of a sequence of packets, which normally are forwarded by a network node asynchronously in a first-in, first-out fashion. Alternatively, the packets may be forwarded according to some scheduling discipline for fair queuing or for differentiated or guaranteed quality of service. In case of a shared physical medium, the packets may be delivered according to some packet-mode multiple access scheme. When traversing network nodes, packets are buffered and queued, resulting in variable delay and throughput, depending on the traffic load in the network.

Packet switching contrasts with another principal networking paradigm, circuit switching, a method which sets up a specific circuit with a limited number dedicated connection of constant bit rate and constant delay between nodes for exclusive use during the communication session.

Packet mode (or packet-oriented, packet-based) communication may be utilized with or without intermediate forwarding nodes (packet switches).